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1.     EXECUTIVE SUMMARY 

This is the final report presented to the Survivability and Safety Branch of Wright Laboratory 
(WL/FIVSM). It summarizes efforts of the Satellite Assessment Division of Phillips Laboratory 
(PL/WSA) toward development of a high fidelity predictive structural composite penetration model. 
This physics based "first principle" model will be able to simulate the dynamic response and progressive 
damage in structural composite laminates subjected to ballistic impact of non-nuclear treats. 

The need for the development of a high fidelity first principle penetration model for composite structures 
subjected to ballistic impact is apparent. Although the smoothed particle hydrodynamics (SPH) 
technique has been successfully applied to simulate hypervelocity impact of homogeneous and isotropic 
solid materials in the early 1990's, the need for simulating behavior of non-homogeneous, anisotropic 
materials under intensive dynamic loading remains. The new challenges posed by modeling the non- 
homogeneity and anisotropy of fiber-reinforced composites are two-fold. One is how to accurately 
describe anisotropic elasto-plasticity, equation of state, and failure condition for unidirectional 
composites under high strain-rate loadings. The other is how to feasibly implement a composite structure 
model in a numerical code simulation while considering the limitation of computer memory and time. 

To address the former problem, PL/WSA has constructed a theoretical foundation representing the 
needed additional physics essentially for simulating dynamic response of composite laminates under 
severely elevated pressure regimes. The remaining task is to descretize and implement into the SPH the 
governing equations where composite laminates can be modeled numerically feasibly and economically. 

Our results clearly demonstrate success in both accounts: (a) numerical simulation of composite 
laminate damage zone correlated well qualitatively with the known experimental data, and (b) newly 
improved SPH proved to be a robust and viable analytical tool for predicting response of non- 
homogeneous, anisotropic composite materials to intensive dynamic loadings. In conclusion, we have 
achieved the established goal of this task where a fundamental and economical analytical tool capable 
of predicting damage response of fiber-reinforced composites to impact loadings is developed. We 
submit however, there is a great deal more development needed before we can assess damage across a 
broad spectrum of composite structures. Following is a list of most pertinent topics: 

(1) generalization of the current developed anisotropic plasticity model and failure criterion for 
fiber-reinforced composites to encompass high strain-rate regime, 

(2) extension of the proposed equation of state for composites to include temperature and phase 
changes, 

(3) development of a tri-axial ellipsoidal smoothing function for prismatic particles, and 
(4) extension of the current SPH capability for interface and boundary condition applications. 



2.     INTRODUCTION 

Impact damage to composite laminates has been studied extensively in the last two decades. Most 
efforts have been devoted to low velocity impact. Due to the constraints of technique and cost, 
however, relatively little progress has been achieved in the understanding of high velocity impact 
of laminated composites. Among the latter, Walters and Scott [1] described an experimental 
observation of deformation patterns within Kevlar 29® composite laminates subjected to a shaped 
charge jet. Brar [2] measured the force on projectile noses while penetrating composite targets as 
well as characterized the failure modes for S-2 Glass® composites. Other experimental efforts focused 
on the ballistic limit and/or residual velocity of a projectile on composite targets [3-6]. Recently, 
Schonberg and Walker [7] presented an experimental investigation of composite materials used as 
bumper shields for preventing the perforation of the pressure walls in multi-wall structural systems 

subjected to hypervelocity projectile impact. In the area of analytical analysis, Cantwell and Morton 
[8] used an energy dissipation model which accounts for elastic deformation, delamination and shear- 

out to predict the perforation threshold of a composite beam. This simple model predicted the 

experimental trends successfully only for thin laminates. Zhu et al. [9] developed a phenomenonlogical 
model which comprised both global and local deformations for laminated Kevlar/polyester plates 
impacted by hard-steel cylindro-conical projectiles. Although an accord between the prediction and 
measurement of the ballistic limits, residual velocities and displacement histories of the projectile was 
satisfactory, it deteriorated successively when velocities and accelerations were examined. Sun and his 
associates [5,10] proposed a quasi-static load-displacement punch curve as the structural constitutive 
model for the entire perforation process. The residual velocities were then estimated based on the 
balance of dynamic energy. Vinson and Walker [11] extended the conical shell model for a textile 
flexible cloth target [12] to predict the ballistic limits and residual velocities of the impactor for 
fibrous polymer matrix composites. In the area of numerical analysis, Blanas [13] used the finite 
element code DYNA3D to evaluate ballistic limits. He concluded that DYNA3D's macromechanical 
model is a marginally acceptable method of modeling penetration phenomena of composite laminates 
only if qualitative results are needed as a structural design criterion. In an attempt to model shock 
wave propagation in fiber-reinforced composites, Anderson and his co-workers [14,15] modified the 
Mie-Gruneisen equation of state (EOS) for metals and applied it to composites so that it is able to 
account for the portion of the pressure resulting from deviatoric strains. The macromechanics-based 
anisotropic constitutive laws for composites, together with the modified EOS, were implemented into 
the finite difference hydrocode HEMP [14] and the finite element hydrocode EPIC [15]. Since no failure 
investigation was attempted, only the onset of failure can be predicted in their analyses. 

The phenomena involved in high velocity impact on composite laminates are complex, including 
local contact, bulging, global deformation, matrix cracking, fiber breakage, fiber-matrix interface 

debonding, delamination, fragmentation, etc. As pointed out by Sun and Potti [10], a detailed 
modeling of damage progression during perforation would be a very difficult task. This is why most 
of the above theoretical investigations for high velocity impact on composite materials was confined 
to ballistic limits and residual velocities of a projectile. Recently, Chen et al. [16] have applied the 
SPH technique [17] to simulate the detail perforation process for B/Al composites. Since the diameter 
of boron fibers is relatively large as compared to the lamina thickness, they modeled the fibers and 
matrix as two different isotropic materials. This approach, however, is prohibitively computer memory 



intensive for graphite/epoxy (Gr/Ep) composites because there is a great number of fibers over a lamina. 

The new challenges posed by modeling the non-homogeneity and anisotropy of fiber-reinforced 
composites are two-fold. One is how to accurately describe the anisotropic elasto-plasticity, equation 
of state (EOS), and failure conditions for a unidirectional composite under high strain-rate loadings. The 
other is how to feasibly implement a composite structure model in a numerical code simulation while 
considering the limitation of computer memory and time. 

In this report the macro-mechanics approach for fiber composites was proposed for the SPH simulations 
of impact penetration into Gr/Ep composites. A 3-D elasto-plasticity constitutive model, an EOS and 
a failure criterion which account for the anisotropic behaviors of fiber composites were developed. Since 
material often undergoes large rotation during impact process, stress and strain transformations between 
the material principal axes and the deformed configurations were also considered based on the polar 
stress rate approach. The above modules for fiber composites were then incorporated into the SPH. 

3-D simulations were carried out with the [0/90/45/-45]s and [45/-45/0/90]s Gr/Ep composite laminates 
impacted by a steel cubic projectile. The impact velocities exceeding the ballistic limits were of interest. 
Detailed numerical results and comparison with the experimental data will be presented and discussed. 
Further development needs will also be addressed. 



3.     THEORETICAL MODEL DEVELOPMENTS 

To describe the impact penetration behavior of homogeneous solid media, three conservation laws of 
mass, momentum and energy must be obeyed. In general, the conservation laws offer five scalar 
equations but involving seven unknowns which are pressure, density, internal energy, temperature, and 
three velocity components. In order to obtain uniqueness of the solutions, material properties, such as 
constitutive relationships and equations of state, will have to be imposed. Since often material would 
undergo large rotation during the impact process, it is also necessary to transform stresses and strains 
back and forth between the unrotated and deformed configurations. In addition, a strength model is 
needed to describe any possible fragmentation. 

For a fiber rein-forced composite, the above physics are complicated and little provision has been made 
to account for the existing inherent non-homogeneous and anisotropic nature so far. In this section, a 
generalized, 3-D, anisotropic elasto-plasticity model, equation of state, and dynamic failure criterion for 
fiber composites will be proposed. The stress and strain transformations between the material principal 
coordinates and deformed configurations will be developed. 

3.1     ANISOTROPIC ELASTO-PI ASTTCITY THEORY 

Several three-dimensional anisotropic plasticity models [18-24] have been proposed for fiber-reinforced 
composite materials. However, most of the theories suffer two shortcomings. One is that some 
approaches utilize the plasticity theory for metals to describe the nonlinear behavior of fiber composites. 
For instance, Griffin et. al [18], Hansen et. al [19], and Xie and Adams [20] employed Hill's orthotropic 
yield criterion. It should be noted that Hill's plasticity theory assume that hydrostatic stress does not 
influence plastic deformation and that the plastic dilatation is incompressible. These two assumptions 
are particularly questionable for fiber-reinforced composites. The other shortcoming is that some 
approaches do not describe material anisotropy parameters completely. The assumptions of linear 
elasticity in the fiber direction [20-22] and transverse isotropy [20,21,23] were commonly made. The 
former is acceptable only for some particular types of composites in which the elastic fibers carry the 
majority of load. The latter is not suitable for composites with a fiber arrangement whose overall 
spacings are different in the different directions. Recently, Chen et. al [24] proposed a generalized yield 
criterion that is quadratic in stresses for B/Al and AS4/PEEK composites. This plasticity model not only 
relaxes the previously imposed assumptions [18-23], but is also general in nature covering composite 
materials composed of various fiber arrays. 

3.1.1     3-D MICROMECHANICS FINITE ELEMENT ANALYSIS 

Driven by laboratory testing limitations and cost, Chen et al [24] used the ANSYS code to conduct 3-D 
micromechanics finite element calculations to generate the nonlinear macro stress-strain data. Their 
micromechanics model was based on a representative volume element (RVE) or unit cell. The analysis 
was performed under the assumption that the periodic fiber arrangement is in the form of square array. 

In reality, however, in a composite lamina the fiber distribution is not regular within the cross-section. 
As reported by Sun and Vaidya [25], for the AS4/PEEK composite a hexagonal array gives a better 
prediction of the nonlinear behavior of the composite than a square array. In the present 3-D 
micromechanics finite element analysis, thus, the hexagonal array is employed for the nonlinear stress- 
strain data acquisition. The composite system considered here is the AS4/3501-6 with 66% fiber volume 



ratio (Fig. 1). The fibers are assumed to be transversely isotropic and linearly elastic. The matrix 
exhibits elastic-plastic characteristics and obeys the von Mises J2 flow rule. The elastic constants used 
in the numerical analysis are given as follows: 

AS4 fiber: En = 234 GPa, E22 = E33= 13.8 GPa, 
G23 = 5.5GPa, G12 = G13 = 27.6 GPa, 
v23 = 0.25, Vi2 = v13 = 0.2; 

3501-6 epoxy: E = 4.8 GPa, v=0.34. 

The nonlinear uniaxial stress-strain curve for the 3501-6 epoxy can be found in Adams and Crane [26]. 
The finite element model, load and boundary conditions applied to the RVE are described in [24]. The 
numerical analysis was carried out using the ANSYS code. 

Figure 2 shows the predicted macro plastic strains in the AS4/3501-6 composite lamina subjected to 
hydrostatic stress. The stress-strain responses are the same in both the transverse directions. It is clear 
that the sum of three normal plastic strain components is not zero. This reveals that for the AS4/3501-6 
composite hydrostatic pressure not only influences plastic deformation, but the plastic dilatation is 
compressible as well. The stress-strain curves under uniaxial simple tension loading in the fiber 
direction are plotted in Fig. 3. The solid lines are the linearly elastic solutions, and the circles present 
the elastic-plastic solutions. At 1% of the total longitudinal strain, for example, the plastic strain 
component is about 0.35% of the total strain. The contraction in the transverse directions at this load is 
about 0.2%. The plastic strain portion is about 7.3% of the total contraction. If the assumption of linear 
elasticity in the fiber direction is posed in developing an anisotropic plasticity model, then these plastic 
deformations will vanish. It is recommended, in the interest of more accurate solution, that the imposed 
assumption be removed. 

3.1.2     ANISOTROPIC YIELD FUNCTION 

The generalized, 3-D anisotropic yield function proposed by Chen et al. [24] is given as, 

/K;)   =  aiian + a220222+a33G33+2a
12
anö22+2a23022033 

+  2ai3ana33+2a44a23+2«55031+2a66öi2 0) 

= k 

where the stresses a^ refer to the principal material directions, and k is a state variable. The nine 
plasticity coefficients a{j describe the amount of anisotropy in plasticity. This yield criterion reduces to 
the Hill's orthotropic yield function when 

au = a33 - (au + a22+a33)/2 

au = a22 - (au + a22+a33)/2 (2) 

a23 = au  - (au + a22+a32)/2 

Assuming the associated flow rule, the incremental plastic strains de^ can be written as 
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in which the superscript p denotes plasticity, and dX is a plastic factor. Let the effective stress a be 
defined as 

N 
3 

■/ 

By comparing Eqs. (1) and (4), one finds that 

7 2^ k - —a 

(4) 

(5) 

The incremental effective plastic strain dep can be derived through the concept of plastic work: 

dWp = ovdeP- = ode? 

From Eqs. (1), (3) and (6), thus, the incremental effective plastic strain can be expressed as 

dTp = -adX 

(6)- 

(7) 

Substituting Eq. (1) into (7) with the inversion of Eq. (3) for oy and regrouping it yields dep in an 
explicit form 
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The determinant in Eq. (9) is zero for a material which obeys the von Mises flow rule or the Hill 
criterion because of the condition of the incompressibility of plastic dilatation. 

The a- ep relationship for a particular loading can then be obtained from Eqs. (1), (3), (4) and (8). For 
example, consider a uniaxial loading, a/(.*0 only (no summation). By using Eqs. (1) and (4), the 
effective stress becomes 
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The incremental plastic strain components, Eq. (3), can be written as 

3*- 0 (ID 

<*£=3L*£       dePk=^Ldei       de'=0    (/#/) (12) 
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Substitution of Eq. (12) into (8) yields the incremental effective plastic strain, 

de? = —def, (13) 

The incremental effective plastic strain can also be derived by substituting (11) into (7) and utilizing (3). 

For a shear loading, o..*0 only, the effective stress becomes 

°  =   \[^r°ij (14) 

where rr = 44, 55 or 66 depending upon the shear stress component (see Eq. 1). The incremental 
effective plastic strain is then given as 

*> = ^4 (15) 

In principle, a master ö-ep relationship for a unidirectional composite can be defined with any of the 
three normal stress-strain curves and three shear stress-strain data, using either Eqs. (11) and (13) or 
Eqs. (14) and (15). In this study, the macro stress-strain response in the 2-direction together with setting 
a22= 1.0, without loss of generality, was considered to define the master o-ep curve. Once the master o-eP 
curve for the composite is obtained, the values of au, a33, a44, a55 and a66 can be chosen by the trial and 
error optimization such that all five stress-strain curves are brought into coincidence with the 
master o- ep curve. The other constants associated with the interaction between any two normal stresses, 
al2, an and an< can be approximated using Eq. (12). The detail of the calibration procedure can be found 
in Ref. 9. 

Using the predicted macro stress-strain data from the micromechanics finite element analysis, the nine 
plasticity parameters in the anisotropic yield function (Eq. (1)) for the AS4/3501-6 composites are 
calibrated as follows: 

an = 0.00058, «22 = «33==    1-0, 
"23 = -0.975, an = an = -0.0025 
«44 = 0.58, a5$ = a66=\A5. 

The corresponding master effective stress-effective plastic strain curve is shown in Fig. 4. 

3.1.3     VERIFICATION OF THE PLASTICITY MODEL 

The verification of the anisotropic plasticity model established for the AS4/3501-6 composite was 
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conducted with the three cases: (1) uniaxial tension in the 2-direction, (2) uniform dilatation, and (3) 
a tri-axial stress case with the loading ratio 10:l:-2. The effective moduli used in the verifications are 
predicted from the 3-D micromechanics finite element model and are given as follows: 

En = 156 GPa, E22 = E33 = 9.28 GPa, 
G23 = 3.78 GPa, G12 = G13 = 7.36 GPa, 
v23 = 0.389, v12 = v13 = 0.244. 

Figures 5 shows the comparison of the total stress and strain results predicted by the 3-D 
micromechanics finite element model and the anisotropic plasticity mode for the uniaxial tension in the 
2-direction. The agreement between the two results is excellent. At o22= 0.209 GPa, the relative errors 
are 1.6% for e>2 and 0.9% for «^. The uniform dilatation case is presented in Fig. 6. As seen in the 
figure, the solutions predicted by the plasticity model match very well with those predicted by the 3-D 
micromechanics finite element model. It is interesting to note that the plasticity in this case is 
insignificant. Figures 7 shows the comparison of the total stress and strain results for the tri-axial stress 
case. Again, there is an excellent agreement between both predictions. At the maximum load calculated 
here, the relative errors are 2.4% for en, 2.1% for e,2, and 1.1% for e33. 

3.1.4     ELASTO-PLASTIC TANGENT STIFFNESS MATRIX 

With the confidence of the anisotropic plasticity model, the elastic-plastic constitutive relationship will 
be established. The plastic factor dX can be determined by rewriting Eq. (7) 

dX = 1JL (16) 4 V 
in which H = do~ldep is the slope of the master ~ö-ep curve. 

If the incremental strains dei} are small, one is able to linearly decompose them into the elastic part de* 
and the plastic part de? as 

de0 = de;+de[ (17) 

The elastic strain increment is defined by the linearly elastic constitutive relationship 

{dee} = [Se]{do} (18) 

where [Se] is the elastic compliance matrix, and {do} is the incremental stress vector. From Eqs. (3) and 
(16), one has the relations between the incremental plastic strains and the incremental stresses as 

{deP} = [SP] {do} <19) 

where [S?] is the plastic compliance matrix. The entities of [S?] are obtained by substituting Eqs. (1), 
(4) and (16) for/, do, and dX, respectively, into Eq. (3). They are 

5,;=nC,Cy i,j=\,2,...,6 (2°) 

in which 

C, = -£; , =  >-±± (21) 
'      do,' *      4ö2H 
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where the subscript i for o: 1=11, 2=22, 3=33, 4=23, 5=31, and 6=12. The relations of the complete 
elastic-plastic stress increments do., and the total strain increments detj are then derived: 

{do} = [Dep]{de] (22) 

where the elastic-plastic tangent stiffness matrix is 

[Dep] = ([Se] + [Sp])A (23) 

Equation (22) can uniquely determine the elasto-plastic stress changes {do} which arise during any 
iteration in which known, finite changes of strain {de} are imposed. 

To calculate the elasto-plastic stresses, the scaling factor approach [27] is employed. At each time step, 
a trial stress state is first computed with the assumption of elastic deformation. If the loading surface is 
violated by the elastic trial stresses, then the stresses will be bring back to the yield surface from the 
overshooting stress state. In this study, the portion of the strain increment corresponding to the stress 
increment beyond the yield value is divided into 5 sub-intervals. The final stresses are determined by 
summing the stresses on the yield surface and the elasto-plastic stress increments sequentially 
calculated five times, using Eq. (22) with the updated plastic compliance matrix [Dep] each time. 

3.2     EQUATION OF STATE 

For metal materials, plastic flow is often assumed to not be influenced by hydrostatic pressure. Thus, 
stresses are split into two parts, i.e., hydrostatic pressure and deviatoric stresses. The hydrostatic 
pressurep is then calculated using an equation of state (EOS) having the functional form/? =p(p,e). 

For a fiber-reinforced composite, both the classical assumptions used in the Hill's orthotropic yield 
function are questioned as shown in Fig. 2. Thus, the application of the conventional approach in which 
the total stresses are partitioned into hydrostatic pressure and deviatoric stresses to fiber-reinforced 
composites remains a challenge. 

Recently, Anderson et. al [15] proposed a modified version of the Mie-Gruneisen EOS for fiber 
composites. The pressure used in their EOS is still defined as the negative of the average of the three 
normal stress components. Therefore, the modified EOS must account for the portion of the pressure 
resulting from the deviatoric strains, which is evaluated based on the linear elasticity assumption. The 
credibility of this EOS was not validated yet, especially the linear elasticity correction for the deviatoric 
strains. 

It is interesting to notice the results shown in Fig. 6 for the AS4/3501-6 composite under uniform 
dilatation. Although some plasticity exists in the composite, it is much less pronounced as compared 
with that under hydrostatic stress (Fig. 2). Therefore, the assumption that uniform dilatation does not 
influence plastic deformation a better approximation for the AS4/3501-6 composites. With this 
assumption, it may be convenient to define the "pressure" as the negative of the average of the three 
normal stress components only corresponding to the volumetric strain. Then this "pressure" can be 
computed using the Mie-Gruneisen EOS without any modifications. Once the "pressure" change 
between two consecutive time steps is determined, the three normal stress components corresponding 
to the change of uniform dilatation can be retrieved using the linearly elastic relationship. The total trial 
stress increments are then evaluated by summing the normal stress changes and the elastic "deviatoric" 
stress increments which are associated only with the deviatoric strains. Then the scaling factor algorithm 
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mentioned previously is employed to compute the elasto-plastic stresses. Note that the "pressure" 
introduced here is different from the hydrostatic pressure defined by Anderson et al [15]. 

The Me-Gruneisen EOS is a theoretically sound model for crystalline metals. It is suitable for high (but 
not extremely high) velocity impact events [28]. The Mie-Gruneisen EOS is given as: 

p(p,e) = (l-IrTi)pH(p) + Tpe (24) 

where T is the Gruneisen constant of the material, r| = p/p0-l represents the compressive behavior, and 
Pn(p) is the so-called Hugoniot curve which represents the locus of all points that may be reached by 
a shock transition from an initial unshocked state (p0,p0). Several forms of the Hugoniot have been 
proposed. The one commonly used in SPH is written as 

«i*l + <yi2 + VI3 V > ° (25) 
ÄjT] T| < 0 

The coefficients ah a2, and a3 in Eq. (25) are obtained from experimental shock compression data. 
Alternatively, they are analytically determined through a Taylor's series expansion of the Hugoniot 
curve pH = c2i\{\ + r\)l[\-^ r\{l-Y)2} as follows [17]: 

a\ ~ P/2 

a2 = fl'[l+2(M)] (26) 

«3 = fll[2(M)+3(M)2] 

in which E, is the constant in the approximated linear relationship between the shock velocity (us) and 
particle velocity (up), 

us = c + E,up (27) 

Since the sound speeds are different in the three directions for fiber composites, an equivalent (bulk) 
sound speed c used in Eqs. (26) and (27) will be proposed. For a fiber composite, the linear bulk 
modulus K evaluated based on the uniform dilatation condition is given as 

I    ll-v„v„       l-vnv31        l-v.,v,. 
K =  J-\ 23    32  +    \1  +   '2   21   + 2 

9 A      E22E33 ^n-^33 E\\E?i 

v+vv v+vv v+vv 21 31     23     ,        31 21     32    ., 12 12    31 

E22E3} E22 Ei3 ^11^11 
(28) 

Equation (28) can be simplified for isotropic materials as, 

K =  (29) 
3(l-2v) 

The equivalent (bulk) Poisson's ratio for the composite is assumed to be 

v=v/F/+vm(l-9 (30) 

Thus, the equivalent sound speed c for the composite can be determined using the relationship from 
isotropic materials 

E(\-v)_ (31) 
\ (l+v)(l-2v)p 

where p is the density of the composite, and E is the equivalent Young's modulus of the composite and 
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is evaluated using Eq. (29) with the bulk modulus and equivalent Poisson's ratio. 

The constants, V and £, and the bulk sound speed for the AS4/3 506-1 composite used in the EOS 
calculation are set as follows: T = 0.87, I = 1.57, and c- 4.69km/s. 

It is important to note that the proposed Mie-Gruneisen EOS for anisotropic materials as well as the 
determination of the constants ab a2, and a3 using Eq. (26) should be validated experimentally. In this 
study, the "pressure" was computed using the EOS for updating the shock speed. It was not used in the 
stress calculation. 

3.3.     DYNAMIC FAILURE 

The theoretical investigation for detail dynamic damage in composite structures due to high velocity 
impact is very limited. One of the main reasons is lack of a high fidelity rate-dependent failure criterion. 
Recently, Randies and Memes [29] proposed a continuum damage model for thick quasi-isotropic 
laminates based on the assumption of homogenous, transversely isotropic behavior for both stiffness and 
damage. They also demonstrated a good prediction of delamination type damage and spallation under 
uniaxial strain condition [30]. It should be noted that the approximation of transverse isotropy is suitable 
only for stiffness. Once local damage occurs, the inital quasi-isotropic laminate will lose its transversely 
isotropy. Therefore, the capability of their continuum damage model for detailed, 3-D damage 
predictions should further be verified. 

To predict detailed damage in a fiber composite, using a layer-wise damage model in the SPH could be 
a more practical approach. Since it is still not available so far, a modified maximum stress failure 
criterion is employed for the dynamic failure analysis in this study. Fracture of a particle is said to have 
occurred if any tensile stress or shear stress in principal material directions is greater than or equal to 
the corresponding strength, 

(32) 

where Xt and Yt are the tensile strengths in the fiber and transverse directions, respectively, and Sfi are 
the shear strengths. When any one of the inequalities in Eq. (32) is satisfied, the particle is assumed to 
instantaneous fail in the respective mode. Once it happens, the material can no longer support the 
corresponding tensile and shear loads. For instance, if o,, >Xt, then on = a I2 = o ,3 = 0. If | o231 >S23, then 
o23= 0, o22= 0 if o22> 0, and  o33=0 if o33> 0. No compressive failure is assumed. 

In reality, dynamic fracture strengths depend on strain rate, temperature, and/or other factors. Therefore, 
a range of rate-dependent stress-strain curves would be necessary to apply for simulating a high rate 
interaction event. However, it is difficult, technically, to obtain a full range of temperature- and rate- 
dependent material properties, especially for the strain rate beyond 105 cm/cm-s. For simplicity, only 
one value was assigned for each strength in this study. Because of the ductile behavior in the epoxy 
resin, the dynamic transverse strength and shear strengths of the composite were assumed to be five 
times the static strengths. On the other hand, the dynamic longitudinal strength remained its static value 
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since the plasticity in the fiber direction is much insignificant. Thus, the values of the dynamic strengths 
for the AS4/3501-6 composite used in this study are: Xt = 1.447 GPa, Yt = 0.26 GPa, and S12 = S13 = S23 

= 0.465 GPa. 

3.4     STRESS AND STRAIN TRANSFORMATIONS 

In the analysis of composite laminate penetration, factors which contribute to misalignment of the global 
geometry coordinate system (GGCS) and material coordinate system (MCS) include initial layups and 
large rotation which material experiences during the penetration process. It is convenient to evaluate 
stresses in the MCS and then transform them back to the GGCS for displacement and subsequent strain 
calculations. Therefore, it is necessary to trace the principal material axes and transform stresses and 
strains back and forth between the GGCS and MCS, during the entire solution course. In doing that, the 
Green-Naghdi stress rate approach was adopted because it is supperior to the Jaumann stress rate 
approach. Our transformation algorithm for fiber composites is extended from the scheme of Flanagan 
and Taylor [31] which was developed for isotropic materials. 

Let the GGCS and MCS be two sets of rectangular Cartesian coordinates. The rotation between these 
two systems can be specified by the three Euler angles (Fig. 8). The individual transformation matrices 
for the three consecutive rotations are anti-symmetric and can easily be derived. The transformation 
matrix for the initial material layups, [R]om, which is from the original (fixed reference) GGCS (x0,y0,z0) 
to the MCS (x3,y3,z3), is the chain-product of the three individual transformation matrices and is given 
as 

r*i 

CjC3  sxc2s3    C]S3  s1c2cJ   J,52 

51C3+C1C2S3     C1C2C3" 5153        Cl52 

O «11J ^i O'jL/ n 

(33) 

where c. = cos0(, s. = sin0;., and 6, is the z'-th Euler angle. 

Let [F] be the deformation gradient. Applying the polar decomposition theorem to [F] yields 

[F] = [V][R]0X= [R]JU] (34) 

where [V\ and [U] are the left- and right-symmetric stretch tensors, respectively, and [R]m is an 
orthogonal, material rotation tensor. The second part of Eq. (34), [i?]OT[f/], may be viewed as 
deformation being first purely stretched from the reference configuration to an unrotated configuration 
and then purely rotated from the unrotated configuration to the current configuration. The first part, 
[V][i?]ox, may be viewed as deformation being rotated from the reference configuration to an rotated 
configuration and then stretched from the rotated configuration to the current configuration. Thus, [U\ 
is the stretch referred to the reference GGCS and [V] the rotated frame. 

The velocity gradient denoted by [L] may be expressed in terms of [F\ as 

[L] = [Pun1 w 

where the superposed dot indicates the time derivative and the superscript"-/" denotes the inverse of 
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Zo,Zl 

Xl,X2 

(b) (c) (d) 

Fig. 8  Three consecutive rotations from the geometry coordinate system to 
thematerial coordinate system 
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the tensor. Conventionally, the velocity gradient is simply partitioned into the strain-rate (symmetric) 
tensor [D] and spin (anti-symmetric) tensor [W], 

[L] = [D] + [W\ (36) 

It is noted from the definition of [L] that [D] and [W] depend on the instantaneous rate of deformation 
of the current configuration. On the other hand, [L] can also be expressed in terms of [U] and [R] which 
relate the current configuration to the reference GGCS by using the right decomposition from (34) in 
(35), 

[L] = [R]JL]o[R]Tox + [Q] (37) 

where 
[L]0 = [U\[U\l and [0] = [R]0X[Rt (38) 

Substitution of the identity matrix, [/], for [R] into Eqs. (37) and (38) indicates that [L]0 is a velocity 
gradient referred to the unrotated (not reference) configuration. Thus, similar to Eq. (36), [L]0 may be 
partitioned into the strain rate tensor [D]0 and spin tensor [W]0 in the unrotated frame 

[L]0 = [D\ + [W\0 (39) 

Also, the following relationships can be derived 

[D]o- [Rf0X[D][R]m and [Q] ■ [W\- [R]0X[W]0[R\l (40> 

It can be seen from Eq. (37) by letteing [£/]=[/] in Eq. (38) that [Q] represents the rate of rigid-body 
rotation at a material point. It is equally simple to show that [W] represents the rate of rotation of the 
principal axes of the strain rate [D]. Both rotation tensors are anti-symmetric. However, [Q] = [W] if and 
only if [L]0 is symmetric, which in general fails to be so although [U] is always symmetric. 

With [D] and [W], the objective Jaumann stress rate [ö]y is written as, 

[d]j=[d]x-[W\[o]x+[a]x[W\ (41) 

and 
[öl^^üo],,™ (2) 

where [o]x is the Cauchy stress in the current configuration and Tx, in general, is an anisotropic function 
of a symmetric 2nd-order tensor. 

As proved by Johnson and Bammann [32], the Cauchy stress rate referred to the unrotated configuration 
is also material frame objective. The relationships among the unrotated and rotated Cauchy stress rates, [ö]0 

and [ö]^, and the Green-Naghdi stress rate [b]p are given as 

[o]p= [d]x-[Q][a]x+[a]x[Q] = [R]J6]0[K\Tm 
(43) 

The two Cauchy stresses are related by 
T (44) 

[o]0= [Rf0Ao]x[R]ox 

Note that the Green-Naghdi stress rate and the Jaumann rate are very similar in form. Although they are 
all objective, the advantage of the unrotated Cauchy stress rate and the Green-Naghdi rate over the 
Jaumann rate is that the first two are truly a measure of the rate of change of stress, while the last has 
no conjugate measure of finite strain associated with it. In addition, the Jaumann rate will lead to a 
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(46) 

(47) 

(48) 

nonsymmetric stiffness tensor between the rates of stress and deformation unless the material is 
incompressible [32]. 

The rate type constitutive equations for the unrotated Cauchy stress rate and Green-Naghdi rate can be 
generally expressed as 

[ö]0= T0([oU£>]0) 
and [ö^^üol.™ (45> 

The second constitutive law in Eq. (45) is identical to Eq. (42); however, the rotated Cauchy stress rate 
calculated from Eqs. (41) and (43) is, in general, different. Equation (45) can be used to evaluate stress 
rate, but it is convenient to evaluate the stresses and then examine the failure modes in the material 
frame for fiber composites. This can be achieved by rotating the strain-rate [D] and the previous Cauchy 
stress tensors back to the MCS. The transformation matrix [R] from the current frame to the MCS is 

simply the product of the two matrices 

[R]  = [RIMon, 

in which [R]om is given in Eq. (33). Of consequence, the following transformations exist 

[o]m= [R]T[o]x[R]      and      [o]x= [R][o]m[R]T 

[D]m = [Rf[D][R]      and      [D] = [R][D]m[R]T 

The subscript m in the above equations represents the quantities in the material frame. With [D]m 

obtained from Eq. (48), the increments of volumetric and deviatoric strains in the material coordinates 
can be decomposed. Therefore, one can calculate the stress rate [ö]m using the EOS and the anisotropic 
elasto-plasticity theory developed in Section 2.1, and then update the current stress [o]m. As pointed 
out by Flanagan and Taylor [31], one of the most challenging tasks in large deformation analysis is to 
determine the rotation tensor [/?]„. Multiplying the second equation in Eq. (38) by [R]m yields, 

[R]ox- [Q][*]„ (49) 

Direct integration of Eq. (49) gives the total rotation tensor [R]m. However, the orthogonality of[R\„ 
degenerates rapidly no matter how fine a time increment used in the integration [31]. 

In the SPH numerical analysis, field variables are evolved incrementally. The geometry configuration 
is updated every time step, while the reference GGCS remains the same. Thus, the above transformation 
algorithm can be considered as for a single time step. To trace the principal material axes, the current, 
total rotation [R]^ at each SPH particle should be estimated during the entire solution course. 

An alternative approximation algorithm for the rate integration of [R]m, which was proposed by Hughes 
and Winget [33], was employed. The total rotation [i?]OT at time t+*t is updated via 

where {xltJ= [ßj {*,}. With the assumption of a constant rate of rotation over a time increment, the 
approximation of Eq. (50) is given as 

([/] - Ut[Q])[Rl+J0X = ([/] + UtiQMR,]« (51) 

The initial conditions for [R]ox is the unit identity matrix. 
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Before the calculation of Eq. (51), [Ü] must be determined. Substituting Eq. (34) into (35), 
postmultiplying by [V\, and regrouping results in 

[V\= [L][V\ - [V\[Q] (52) 

Since the tensors [Q] and [W\ have only three independent components, for convenience, two dual 
vectors based on the right-handed rates of rotation can be defined 

Q„ = eikJwk (53) 

W,j = eikjwk (54) 

Substituting Eqs. (36), (53) and (54) into (52) results in 

{co}= M + ([I]tr([V\) - [F])"1^} (55) 
in which 

z. = e,.D   V . (56) 
/ ikj    jm    mk y     ' 

Making use of Eqs. (53), (55) and (56), the rotation rate tensor [Q] can be evaluated once the velocity 
gradient [L] and the left stretch tensor [V] are determined. Note that the matrix [L] is computed using 
the velocity components obtained from the momentum equations. The matrix [V\ is time integrated using 
Eq. (52) with an initial condition corresponding to the initial state of stress. For an undeformed state, 
normally the stretch is set to the identity tensor [/]. 

3.5     SMOOTHED PARTICLE HYDRODYNAMICS 

SPH is a pure Lagrangian particle method, which was introduced by Lucy [34] and Gingold and 
Monaghon [35] in 1977. It has been successfully applied to astrophysics and shock physics since then 
as well as to hypervelocity impact of solid materials in the early 1990's [17]. The power of SPH is that 
no underlying grids are required. It not only avoids the numerical difficulties of mesh entanglement and 
distortion during the loading process as often occur in the finite element and finite difference analyses 
but also lends itself to the treatment of initiation and growth of cracks. Thus, in addition to the ballistic 
limits and residual velocities, the detailed damage progression, such as perforation, matrix cracking, 
fiber breakage, delamination, fragmentation, etc., can naturally be simulated with this unique technique. 

The foundation of SPH is the interpolation theory. Through the use of kernel estimates, the partial 
differential equations of the three conservative laws of continuum mechanics can be transformed into 
integral forms. Numerically, these integral equations are approximated in terms of the field variables 
at a set of disordered points (particles). These field variables are then directly evolved from the 
interactions among particles using an explicit time integration scheme. Therefore, no matrix equation 
solving is required. The details of the SPH formulation for solid materials can be found in Libersky et 
al. [17]. 

In the present study, the capability of the SPH for isotropic materials is extended to include fiber- 
reinforced composites. The anisotropic, elasto-plastic constitutive law, equation of state, rate-dependent 
failure criterion for the AS4/3501-6 composites, as well as the stress and strain transformations between 
material and geometric coordinate systems under large rotation described in the previous sections were 
incorporated into the hydro code MAGI. 
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4.     NUMERICAL RESULTS AND DISCUSSION 

The main purpose of this program is study the feasibility of the SPH for 3-D composite laminate 
penetration. Before doing that, the credibility of the modified MAGI code, named CMAGI, was first 
verified. The resolution dependency of the number of particles on the SPH solution was also 
investigated. An aluminum plate impacted by a steel rod was considered for the former, and the 
AS4/3501-6 composite laminates impacted by a steel rod were studied for the latter. These calculations 
were performed under the plane strain assumption. In the 3-D simulations, normal impact of a steel cube 
striking at the center of the 8-layer AS4/3501-6 composite laminates were conducted. Three impact 
velocities (V) were investigated: 0.2 km/s, 0.6 km/s and 2.0 km/s. For the sake of clarity, the results of 
damage in the targets presented in the following are confined to specific critical regions. 

4.1     VALIDATION OF THE MODIFIED MAGI CODE 

The credibility of the CMAGI code for the composite materials was verified with the case of normal 
impact of a square steel rod striking at the center of an aluminum plate. Plane strain condition was 
assumed. The width and thickness of the cross-section of the target are 1.93 cm and 0.0965 cm, 
respectively. The size of the square projectile is 0.386 cm. The impact speed was set at 2.0 km/s. Due 
to symmetry, only half of the domain was analyzed. Two calculations were carried out using the MAGI 
code (isotropic material version) and the CMAGI code, respectively. The aluminum target was modeled 
as a single material for the former while it was treated as an 8-layer "composite" for the latter. For the 
comparison purpose, no failure was assumed for the aluminum target since the failure model proposed 
in the CMAGI is different from that used in the MAGI. 

Figure 9 shows the deformation configurations for the aluminum target and steel projectile at 1.0 us 
predicted using the CMAGI and MAGI codes. It is seen from the figure that the overall responses are 
similar but the local deformations are different. 

The discrepancy of the local deformations could be caused by the stress scaling back algorithm. The 
MAGI code brings the stress deviators saß back to the yield surface from the overshooting, elastic stress 
state based on the assumption, 

s „=s„   — <'2 (57) 
>aß = a^Yo^J2 

where sa
e
p are the overshooting deviatoric stresses evaluated using the linear elasticity; J2 and Y0 are the 

von Mises stress and the material yield stress, respectively. It should be noted that Eq. (57) is suitable 
only for the cases that all deviatoric stresses are increasing in ratio. In the impact events, the loading 
could be history-sensitive; therefore, the accuracy of using Eq. (57) is questionable. In the CMAGI, the 
elastic-plastic stress calculation is carried out using the scaling factor approach as previously mentioned. 
Obviously the present approach would predict more accurate results. 

The other possible reason for the different local deformations could be the stress and strain 
transformations between the undeformed and deformed configurations. No transformation is included 
in the MAGI code. 
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(a) isotropic material approach 

(b) composite laminate approach 

Fig. 9 Aluminum target and steel projectile deformation at 1.0 |is 
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4.2 SPH SOLUTION ACCURACY AS A FUNCTION OF NUMBER OF PARTICLES 

Two different AS4/3501-6 composite laminates, [08] and [0/90/45/-45],, were considered for studying 
the resolution dependency of the SPH solution as a function of number of particles. Normal impact at 
the center of the plates and plane strain condition were assumed. The width and thickness of the cross- 
section of both composite targets are 4.0 cm and 0.0965 cm, respectively. The size of the square steel 
projectile is 0.386 cm. The striking speed of the projectile was set at 2.0 km/s. On account of the 
symmetry, only half of the domain was analyzed. For each impact case, two different SPH models were 
set up. One model consisted of six particles per layer, and the other model had two particles per layer. 
Of course, the simulation with more particles required more computer memory and time than that with 
less particles. 

Figure 10 presents the impact results at 3.0 us for the [0g] laminate modeled with six particles per layer. 
The pink-colored particles in Fig. 10b are damaged. Delamination is clearly present between the 2nd 
and 3rd layers (from the bottom). The damaged zone is about three times the projectile size. The results 
predicted with two particles per layer are shown in Fig. 11. Although delamination is not clearly shown 
as in Fig. 10, the patterns and sizes of the damage predicted by the two models are close . 

The impact results at 3.0 us for the [0/90/45/-45]s laminate predicted with 6 particles and 2 particles per 
layer are shown in Figs. 12 and 13, respectively. The sizes of the perforation holes are close for the two 
predictions; however, the six particles model results in more damage than the two particles model. 

The above results imply that in order to accurately predict damage, a composite structure with different 
fiber orientations or material systems requires finer particles than a single material structure. 

4.3 3-D SIMULATIONS OF COMPOSITE LAMINATE PENETRATION 

All the WL AS4/3501-6 composite specimens measured 20.32x20.32 cm and were clamped around the 
periphery. The unsupported surface was 17.78x17.78 cm. Each laminar is 0.01206 cm thick. Two 
different fragment projectiles were of interest. One was prismatic with the dimensions of 
0.584x0.584x0.724 cm, and the other was cubic with a side length of 0.970 cm. 

As shown in Section 4.2, a SPH model with two particles per layer is not able to predict accurate 
damage results for the [0/90/45/-45]s laminate. For the WL 8-ply laminates, the ratio between the length 
of the free surface and thickness is about 184. Thus, the number of particles required to modeled a 
quadrant of the plates will be over 8.6 millions even though only two particles are modeled in one layer. 
This makes it formiable difficult to simulate the WL penetration tests. Therefore, it was our intent to 
conduct the 3-D composite laminate penetration calculations for demonstrating the SPH capability rather 
than for simulating the real WL tests. 

In the following 3-D calculations, normal impact simulations of a steel fragment striking at the center 
of the AS4/3506-1 composite plates were carried out. The laminate considered here is an 8-layer 
composite with the in-plane dimensions of 4.0x4.0 cm. The cubic projectile is a steel fragment. Each 
size is 0.386 cm long (four times the laminate thickness). No constraints are imposed on the composite 
target. For convenience, only the first quadrant of the plate was modeled with one particle per layer. The 
numbers of particles composing the projectile and the composite are 8,192 and 217,800, respectively. 
It should be noted that the quasi-isotropic laminate considered here exhibits the bending twist coupling. 
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Strictly speaking, an entire plate or a half of the plate with a special treatment of the cut boundary should 
be analyzed. 

Case 1:  [0/90/45/-45]s laminate impacted at 2.0 km/s 

Figure 14 presents the predicted deformation states at different penetration stages for the [0/90/45/-45]s 

laminate impacted at 2.0 km/s. The length of each size of the plate shown in the figure is 0.6 cm. As 
seen in Figs. 14c and d, the perforation process completed between 1.0 us and 2.0 us. Ejectas are found 
in Fig. 14d. They are originated from the top layer where the fibers are perpendicular to the size of the 
projectile. Figure 15 shown the different views of the deformation configurations at 3.0 us. The damage 
at this time is considered as the final damage state although there was a small amount of additional 
deformation still to occur. It is visually indicated that the composite laminate remains in good shape 
except for the vicinity of the impact region. The damage pattern at the cross-sections of x=0, y=0, and 
x=y are plotted in Fig. 16. The length of the cross-section shown in this figure is 1.0 cm. The particles 
with yellow color are damaged with at least one failure mode. As shown in Fig. 16, the perforation hole 
is about 30% larger than the size of the projectile. Although the present model of one particle per layer 
can not exactly predict delamination, the damage pattern at y=0 (i.e. x-axis) is similar to that reported 
by Czarnecki [36]. In Ref. 36, the quasi-isotropic 32-ply laminate was made of the same [0/90/45/-45] 
family. The damage sustained near the laminate rear face was extreme delamination several times the 
diameter of the spherical projectile. 

Case 2:  [45/-45/0/90]s laminate impacted at 2.0 km/s 

The deformation at 3.0 us for the [45/-45/0/90]s laminate impacted at 2.0 km/s is shown in Fig. 17. The 
length of each size of the plate shown in the figure is 0.6 cm. No ejecta is found in this case. The size 
of the perforation is close to that in the [0/90/45/-45]s laminate impacted by the same speed. Figure 18 
indicates the damage patterns at the cross-sections of x=0, y=0, and x=y. The length of the cross-section 
shown in Fig. 18 is 1.0 cm. The detailed damage in the vicinity of the perforation is different from that 
seen in the [0/90/45/-45]s laminate. At x=0, the dominating damage in the second and seventh plies is 
much severer in the [45/-45/0/90]s laminate than that in the [0/90/45/-45]s laminate. At y=0, the damage 
occurs evenly in the two -45 degree plies and the 0-degree layer in this case instead of the triangular 
damage zone found in the three bottom layers for the [0/90/45/-45]s laminate (Fig. 16b). The difference 
is less pronounced for the cross-section of x=y. 

Case 3:  [45/-45/0/90]s laminate impacted at 0.6 km/s 

Figure 19 shows the deformation at 10.0 us for the [45/-45/0/90]s laminate impacted at 0.6 km/s. The 
length of each size of the plate shown in the figure is 1.0 cm. It is interesting to note the results in Fig. 
19b. A strip of damage extends along the 45 degree direction from the corner of the perforation. This 
damage pattern is similar to the C-SCAN inspection (Fig. 20) made by the Wright Laboratory [37]. 
Figure 21 presents the detailed damage at the cross-sections of x=0, y=0, and x=y. The length of the 
cross-section shown in the figure is 1.5 cm. The front size of the perforation is close to the size of the 
projectile, while the rear size is larger. In general, the perforation hole is smaller than that caused by the 
striking speed of 2.0 km/s. The damage along the 45-degree direction is clearly indicated in Fig. 21c. 
It occurs in the two bottom layers and the top layer and is several times the size of the projectile. 

The penetraion simulation for the second quadrant of the plate was also carried out. No damage was 
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(a) t = 0 (b) t = 0.5 us 

""sssf 

(c) t= 1.0 us (d) t = 2.0ns 

Fig. 14 Penetration at different stages for the [0/90/45/-45]s laminate impacted by 
a steel cube with V=2.0 km/s 
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Fig. 16  Damage pattern at the cross-sections of x=0, y=0, and x=y in the [0/90/45/-45]s 
laminate impacted by a steel cube with V= 2.0 km/s at 3.0 (is 
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Fig. 18 Damage pattern at the cross-sections of x=0, y=0, and x=y in the [45/-45/0/90]s 
laminate impacted by a steel cube with V= 2.0 km/s at 3.0 ps 
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Fig. 20 A representative damage pattern in the [45/-45/0/90]s laminate 
impacted by a steel cube measured using C-SCAN [24] 
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(a) x=0 

(b) y=0 

(c) x=y 

Fig. 21 Damage pattern at the cross-sections of x=0, y=0, and x=y in the [45/-45/0/90]s 
laminate at 10.0 |us after impact by a steel cube at V= 0.6 km/s 
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found on the top and bottom faces except in the vicinity of the perforation. This is consistent with the 
experimental result shown in Fig. 20. 

Case 4:  [45/-45/0/90]s laminate impacted at 0.2 km/s 

The deformation at 10.0 us for the [45/-45/0/90]s laminate impacted at 0.2 km/s is presented in Fig. 22. 
The length of each size of the plate shown in the figure is 1.0 cm. The penetration process is not 
completed yet at this time. Note again the strip of damage that extends along the 45 degree direction 
from the corner of the perforation (Fig. 22b). The width of the strip is greater than that found in the case 
of the 0.6 km/s impact speed. The final damage in the entire quadrant of the composite plate (at 30.0 us) 
is shown in Fig. 23. The perforation hole is larger in the x-direction than in the y-direction. The damage 
is found at many locations in both Figs. 23a and b. It is not clear if the prediction is reasonable or not 
for this case. 

Figure 24 shows the deformed projectiles after impact at the striking speeds of 0.2, 0.6 and 2.0 km/s. 
It is clearly indicated in the figure that the projectile loses its mass at 2.0 km/s. The higher the impact 
speed, the severer the deformation of the projectile. The predicted residual velocities of the projectiles 
are about 0.185 km/s, 0.558 km/s and 1.885 km/s, respectively. The percentages of the residual 
velocities to the initial striking speeds are 92.5%, 93.0% and 94.2%, which are close to the measurement 
by the Wright Laboratory [37]. 
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5.     CONCLUSIONS AND RECOMMENDATION 

A physics-based "first principle" model for composite laminate penetration was developed and 
incorporated into the smoothed particle hydrodynamics code. The model includes various modules 
appropriate for fiber composites. They are an anisotropic elasto-plasticity constitutive model, an 
equation of state, a failure criterion, as well as stress and strain transformations between the material and 
geometric coordinate systems under large deformation. Due to the limitation of the computer memory 
and time, numerical simulations of 3-D composite laminate penetration were performed with an intent 
for the SPH capability demonstration rather than the real WL test simulation. Our results clearly 
demonstrate success in both accounts: (a) numerical simulation of composite laminate damage zone 
correlated well with the known experimental data, and (b) newly improved SPH proved to be a robust 
and viable analytical tool for predicting response of non-homogeneous, anisotropic composite materials 
to intensive dynamic loadings. 

In conclusion, we have achieved the established goal of this task where a fundamental and economical 
analytical tool capable of predicting damage response of fiber-reinforced composites to impact loadings 
is developed. We submit however, there is a great deal more development needed before we can assess 
damage across a broad spectrum of composite structures. Following is a list of most pertinent topics: 

(1) generalization of the current developed anisotropic plasticity model and failure criterion for 
fiber-reinforced composites to encompass high strain-rate regime, 

(2) extension of the proposed equation of state for composites to include temperature and phase 
changes, 

(3) development of a tri-axial ellipsoidal smoothing function for prismatic particles, and 
(4) extension of the current SPH capability for interface and boundary condition applications. 

The first two topics are straight forward. They heavily rely on experiment. The last two needs are 
explained as follows. 

To overcome the computer memory problem and to improve the computational efforts, parallel 
computation could be one of the possible approaches. However, this method could be less attractive 
because the number of particles required for an accurate solution could be enormous. An alternative 
approach is the mixed finite element and SPH method. The critical regions, such as the vicinity of the 
projectile-target interaction and the possible damage zones, are modeled using the SPH, while the 
remote, non-critical area is analyzed using the finite element method. Again, this approach could be less 
intriguing. The reason is that damage zone in composite laminates could be large and, in turn, requires 
a huge number of particles to model. The other reason is that the boundary of the damage zone is 
unknown prior to the solution. Of consequence, the partition of the entire domain for the finite element 
method and SPH depends on one's luck. A more feasible approach, we believe, is to develop a tri-axial 
ellipsoidal smoothing function for prismatic particles [38-39]. A particle with a large aspect ratio of the 
in-plane dimension to thickness can tremendously reduce the total number of particles needed to model 
the composite laminate and the projectile. A technical problem of this approach is that an ellipsoidal 
kernel does not conserve angular momentum. Once the problem is solved, the benefits from this 
approach on computer memory and time as well as labor efforts are evident. 

Because the damage in a composite laminate could significantly be influenced by the stress waves 
reflected from different types of boundary, the boundary conditions should properly be treated in high 
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velocity impacts. In the current CMAGI code, two boundary conditions are allowed: free and symmetric. 
The latter is imposed by introducing ghost particles. To treat the clamped boundary conditions as 
required by the WL tests, some additional technical work must and can be done. 
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